
Postgres test data
generation 101

Kaarel Moppel, Freelance PostgreSQL Consultant
 pgDay Nordic 2025, Copenhagen

$ whoami

● Full-time “wrestlingˮ with databases since 2007
● 20K+ hours in the Postgres ecosystem

○ Many hats along the way
○ Have developed somekind of a gut feeling on

“Postgresˮ-y things if anything
● Up for Postgres related consulting

○ https://kmoppel.github.io/ Blog & Contact)

https://kmoppel.github.io/

Agenda

● The “whyˮ
● Common techniques
● Advanced techniques
● Tooling
● AI-assisted tooling
● Speeding things up
● Gotchas

The “whyˮ

Nobody is asking that question for app code, right ?

As a consultant Iʼm seeing over and over again that the initial DB layout
(or even the single-node approach in general) was completely not
suitable for upcoming known data growth / request counts …

Such that in a few years $someone will have to deal with:
● Jumpy or allout bad query performance
● Manual DB maintenance routines
● Unplanned work / incidents / downtime
● Massive HW upscaling to cover some peaks and sleep peacefully

Could have been avoided with some pretty basic* DB-side validation!

Why bother with DB testing / validation ?

● Setting up a benchmark forces one to think a bit more about
the DB design

● Takes away some FUD around DB internals
○ Might be “forcedˮ to learn about a Postgres setting or two
○ Makes future experimenting more cheap / accessible!

● Should bring out some obvious performance and concurrency
bottlenecks
○ Assures that the design can handle the projected workload

● Validates approx query performance / TPS per $$
● Validates hardware / cloud provider degradation and settings

○ Not all clouds are created equal

Benefits of test data generation / performance testing

● If have a lot of data (+ incoming streams) can gauge how doable /
time-consuming / expensive database migrations might be in the
future
○ The “oh, weʼll then just migrateˮ myth

● How much space / $$ would backups and snapshots allocate for
huge DBs after compression / deduplication steps?

● How much WAL will we be generating, can LR even keep up?
● How much time would it take to run a “pg_dumpˮ or PITR restore

clone from a future life-sized DB?
○ Just in case - “pg_dumpˮ is not a good backup strategy

Benefits of test data generation / performance testing

Gaps in DB side knowledge and lack of awareness on importance

● Often considered “someone elseʼsˮ territory - meaning just
overlooked or testing limited to unit / functional / integration tests
across the DB boundary

● The app frameworks / deployment systems often get in the way
○ Testdata tasks are pretty long-running

● Hard to fix the knowledge gap in a short time obviously (even with
AI…but there are a few basic techniques that should give the 80%
result with “little effortˮ™

The “elephant in the roomˮ

http://pgtap

Finding where to plug in “database stuffˮ is a real problem actually - even in
todayʼs world of abstractions - a database is often not “meat ,ˮ not “fish .ˮ And
worse - even scale-ups, not to mention startups, donʼt want* or canʼt find a DBA …

Iʼd advocate for a two-pronged approach:

● Just task someone “DB-ableˮ with ad-hoc one-time validation
○ Ignoring teamʼs common CI/CD flow of doing things if needed. Standalone SQL or

Python scripts and some result numbers are infinitely better than nothing!
○ DB engines are pretty stable and try to use robustly scaling algorithms - the initial

pre-rollout verification is the most critical!
● Setting up some automation to be able to run through a more extensive / slow

DB pipeline also “per need ,ˮ when some danger / long term possible
side-effects identified

○ A mini-version of the former so to say, with some visible feedback so that
“non-wizardsˮ could be alarmed

Finding a window in the SDLC process

Must have techniques

The generate_series() function is a must have tool in a Postgres
devʼs toolbox!

● A generator function to “drawˮ sequences / rows from
● Similar to Pythonʼs “rangeˮ
● Supports numerals and dates / timestamps
● Step / stride

select generate_series(1, 10, 5;
 generate_series
─────────────────
 1
 6
2 rows

Techniques - generate_series()

select d::date, i from
 generate_series(current_date-6, current_date, '1d'::interval) with ordinality x(d, i);

Techniques - generate_series()

Q How big would our event table will look like after 3years, assuming we have
50 INSERTʼs per second?

CREATE UNLOGGED TABLE measurement (
 id int8 GENERATED ALWAYS AS IDENTITY,
 created_on timestamptz,
 value1 float,
 value2 float
);

INSERT INTO measurement (created_on, value1, value2
SELECT gs, 0, 0
FROM
 generate_series(CURRENT_DATE - '3 years'::interval, now(), '20ms') gs;
…

Techniques - generate_series()

SELECT random(); -- float / double precision between 0.0 <= x < 1.0
SELECT string_agg(
 substr('ABCDEFGHJKLMNPQRSTUVWXYZ23456789',
 (random() * 31  1int, 1, ''
) FROM generate_series(1, 8);

SELECT random_normal(100, 10 FROM generate_series(1, 10); -- v16

-- From the “tablefuncˮ extension
SELECT  FROM normal_rand(1000, 5, 3; -- 1k values with a mean of 5 and stddev 3

SELECT setseed(0.666); -- to have repeatable “randomˮ data

PS For more serious / expensive randomization try the “pgcryptoˮ extension or extract
some parts from gen_random_uuid()

Techniques - randomizing

A classic to randomize between a few choices or increase randomness / add some jitter
by chaining together a few random()-s

SELECT
 CASE WHEN random() < 0.5 THEN
 true
 ELSE
 false
 END AS x;

SELECT
 CASE WHEN random() < 0.02 THEN
 random() * 100
 WHEN random() < 0.1 THEN
 random() * 10
 ELSE
 random()
 END AS x;

Techniques - CASE WHEN random() chaining

Ideally one should remain in pure SQL or SQL functions “territoryˮ (faster*), but if logic
gets too unreadable PL/pgSQL is a good choice still for “in-DBˮ generation

SELECT (array_shuffle(string_to_array('abcd', NULL1;
 vs
SELECT random_choice(array['a', 'b', 'c', 'd']);

CREATE OR REPLACE FUNCTION random_choice (items anyarray)
 RETURNS anyelement
 LANGUAGE plpgsql AS $$
DECLARE
 len int; idx int;
BEGIN
 len := array_length(items, 1;
 idx := 1 + floor(random() * len)::int;
 RETURN items[idx];
END; $$;

Techniques - PL/pgSQL

To choose larger chunks of shuffled / randomized data PostgreSQL
supports the SQL2003 standard TABLESAMPLE clause:

-- Take 30% of data
SELECT  FROM pgbech_accounts TABLESAMPLE SYSTEM 30 ;

SYSTEM - takes some random blocks, takes all records from those block
BERNOULLI - scans the whole table and randomizes individual rows
SYSTEM_ROWS - exact rows. Need to create the “tsm_system_rowsˮ
extension

Techniques - TABLESAMPLE

https://www.postgresql.org/docs/current/sql-select.html

Lateral enables JOIN-level “generatorsˮ- i.e. for each input “parentˮ / “left sideˮ row, we
want to dynamically choose “childˮ or “factˮ rows based on some criteria. A MUST
HAVE technique in a data / database engineers toolbox!

SELECT a.* FROM pgbench_branches b
 JOIN LATERAL SELECT bid, aid, abalance FROM pgbench_accounts
 WHERE bid = b.bid ORDER BY abalance DESC LIMIT 2) a ON TRUE;

Techniques - LATERAL Joins

PS Also variable rowcounts per group is possible! Especially in ML model
training can be crucial that all groups are represented, albeit a little.

-- Assuming have some “drivingˮ table column available
-- ALTER TABLE pgbench_branches ADD rowlimit int DEFAULT 6*random())::int ;

SELECT a.* FROM pgbench_branches b
 JOIN LATERAL (
 SELECT  FROM pgbench_accounts
 WHERE bid = b.bid LIMIT b.rowlimit /* Or directly: (random6int */
) a ON TRUE;

Techniques - LATERAL Joins

Advanced techniques

Pgbench is a lightweight and easy to use benchmarking tool / framework tfrom the
Postgres project (might not be bundled with “clientˮ packages though)

● Revolves around a simplistic OLTP-style banking schema (by default, TCPB like)
● Can be scripted and parallelized

pgbench --initialize --scale=1 # 1 scale unit = 100k bank accounts ~ 13MB of main table data
pgbench -n --select-only --client=2 --time=10 # Do key reads for 10s from 2 sessions

Advanced techniques - pgbench

FYI - to “grok” the magic
scale units I’m usually
using a little helper up on
JSFiddle . More here on
how the formula was
derived.

https://www.postgresql.org/docs/16/pgbench.html
https://jsfiddle.net/kmoppel/6zrfwbas/
https://www.cybertec-postgresql.com/en/a-formula-to-calculate-pgbench-scaling-factor-for-target-db-size/

The default schema / test scripts are rarely useful outside of stress testing or getting an
approximate latency feel for indexed key operations.
Can use custom SQL files or “pgbenchˮ scripts to play with custom schemas, variables,
different types of randomness, fetch some setup data from DB / shell, if / else.

$ pgbench --show-script simple-update

-- simple-update: <builtin: simple update>
\set aid random(1, 100000 * :scale)
\set bid random(1, 1 * :scale)
\set tid random(1, 10 * :scale)
\set delta random(-5000, 5000
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta,
CURRENT_TIMESTAMP;
END;

Advanced techniques - custom pgbench scripts

https://www.postgresql.org/docs/16/pgbench.html#id-1.9.4.11.9.3
https://www.postgresql.org/docs/current/pgbench.html#PGBENCH-BUILTIN-FUNCTIONS

SELECT project_id, table_id, 1 as pgbench_helper
FROM public.table_metadata ORDER BY random() LIMIT 1 \aset

SELECT tz - (random()*1000)::int * '1ms'::interval as tz, 1 as
pgbench_helper FROM (select unnest(histogram_bounds::text::timestamptz[])
tz from pg_stats where attname = 'last_changed_time' and schemaname =
'public' and tablename = 'datatable') x ORDER BY random() LIMIT 1 \gset

\set shard_id random(0, 9)

select row_key, data, last_changed_time
from datatable
where shard_id = :shard_id
and project_id = :project_id and table_id = :table_id
and last_changed_time > ':tz'::timestamptz
order by row_key limit 1001;

Advanced techniques - custom pgbench scripts

A short version of a some actual test I ran to choose a partitioning strategy

Set up the schema / import data distributions from production
…

Reset internal Postgres stats counters
psql -c “SELECT pg_stat_statements_reset()ˮ -c “SELECT pg_stat_reset()ˮ

The scales are from analyzing prod pg_stat_statements calls data
pgbench -n -f ins_upd.sql1 -f sel_1.sql30 \
 -f sel_2.sql20 -f sel_3.sql10 -f sel_4.sql5 \
 -f sel_5.sql5 -f del_gc.sql1 \
 --client=32 --jobs 2 T 86400 P 1800 &> run.log

Analyze the metrics …

Advanced techniques - custom pgbench scripts

Allows to easily generate “near to real lifeˮ distributions. In case the real values are not a
secret, would needs some custom handling / hashing otherwise

SELECT
 schemaname,
 tablename,
 attname,
 null_frac,
 avg_width,
 n_distinct,
 most_common_freqs,
 correlation,
 most_common_vals::text::text[], -- assuming no secrecy issues
 histogram_bounds::text::text[] -- has real values in it
FROM pg_stats
WHERE tablename IN ('pgbench_accounts','...');

Advanced techniques - using real table stats

If want to “test cloneˮ (*) a larger existing DB distribution, one should know that
the Postgres stats are by default very lossy - ANALYZE scans max 30k pages
234 MB. If your data changes rapidly or is skewy then defaults are not enough!

A workaround is to increase the “stats targetˮ temporarily, update stats, export, roll
back.

begin;
set default_statistics_target to 400 ; -- ~1GB
analyze pgbench_accounts ; -- PS will block Autovacuum!
\copy ... -- export pg_stats
rollback; -- NB! Commit could flip some plans

One stats exporting-importing example here:

Advanced techniques - increasing stats precision

https://gist.github.com/kmoppel/dbc805c6a0519d4a9e0a5d9b92c03425

When populating some “realˮ app schema, it can be tedious to insert test data - as
all Foreign Keys need to be satisfied …

Or with performance testing we might only care about a few critical / fast-growing
tables, not the correctness of the whole “spiderweb .ˮ

Workarounds:

● A schema dump with minimal table definitions only:
pg_dump --section=pre-data mydb

● A custom schema dump with a few tables only:
pg_dump -t customers T '*bigtable*' mydb

● A Postgres session level hack to disable background FK triggers:
SET session_replication_role TO replica ; ⚠

Advanced techniques - jumping over FK hurdles

Tooling

The “problem spaceˮ is not new actually - quite some tools out there! They assist
mostly with test data generation, but also with anonymization and load testing / actual
benchmarking.

Benefits of generating synthetic test data:

● Privacy / security - no real data can leak
● Faster development - donʼt have to wait for any green lights / gate-keeping
● Flexibility - can often speed up things if to disconnect from real world constraints

○ Some duplicate / cheap “fillerˮ data OK in most cases
○ Rarely actually need all columns for example to be authentic to develop “a

feature or two ,ˮ just similar size / volume and index cardinality
● With “AIˮ can get pretty close to “authenticˮ nowadays

○ Could run into time / latency / cost issues though …

Tooling - no shortage

The “fakerˮ Python library / CLI - “motherˮ on many other tools / wrappers
● Built-in providers and Community providers / extra domains

Tooling - generation

https://faker.readthedocs.io/en/master/#basic-usage
https://faker.readthedocs.io/en/stable/providers.html
https://faker.readthedocs.io/en/stable/communityproviders.html

mimesis - or a sort of faker++ in Python - faster and with a bit more humanly touch

Tooling - generation

https://github.com/lk-geimfari/mimesis

PostgreSQL Anonymizer - Daliboʼs postgresql_faker functionalities have moved
● Some built-in seed datasets + custom functions

Tooling - generation

https://gitlab.com/dalibo/postgresql_anonymizer

Synth - was a pretty promising declarative generator
● With option to infer data type / nature from live DB-s

Tooling - generation

https://github.com/shuttle-hq/synth

Benerator - “old styleˮ XML description to files / RDBMs
DATAMIMIC - a more modern “AIˮ-aided version of Benerator

Tooling - generation

https://github.com/rapiddweller/rapiddweller-benerator-ce
https://github.com/rapiddweller/datamimic

Not really that hard to throw together “somethingˮ for a limited business domain project.
For example Iʼve also got a small set of pure-SQL functions for myself for main data
types / object classes to generate random, or choiced / ranged, pseudo-random data.

The benefit of pure-SQL is that it runs on all flavors of Postgres and doesnʼt need any
complex installation or privileges and can fire up “pgbenchˮ quickly.

insert into table_x
select
 tdgen.random_bigint() as id,
 tdgen.random_choice('1,2,3,4'::int8 as project_id,
 tdgen.random_text(10, 20) as description,
 tdgen.random_choice('1,1,1,0,0,2'::int8 as depth,
 tdgen.random_jsonb(0,2) as metadata,
 tdgen.random_epoch_micros('20211101') / 1000 as last_updated_time,
 tdgen.random_bigint() % 1e6 as dataset_id
from
 generate_series(1, 1e6);

Tooling - generation

Tooling - AD 2025

Tooling - generation, AI-assisted (cloud)

A promising
start at least!

Used ChatGPT
prompt link

https://chatgpt.com/share/67d8a35c-7ab0-8009-a102-371d620c1faa

Tooling - generation, AI-assisted (local)

Couldn’t get much simpler
really with Ollama:
1. Install Ollama
2. Start Ollama (ollama

serve)
3. pip install ollama
4. Run the Python code (for

better DB injection in dict
or JSON format + use
streaming mode)

Tooling - generation, AI-assisted (local)

https://github.com/
sdv-dev/SDV

https://github.com/sdv-dev/SDV
https://github.com/sdv-dev/SDV

Tooling - generation, AI-assisted (more knobs)

https://github.com/mostly-ai
/mostlyai

Python toolkit for
high-fidelity, privacy-safe
Synthetic Data. Local and
client modes, trained model
exporting / re-use

https://github.com/mostly-ai/mostlyai
https://github.com/mostly-ai/mostlyai

Tooling - generation, AI-assisted (more knobs)

https://github.com/gretelai
/gretel-synthetics

Quite advanced already,
need some AI/ML
background

https://github.com/gretelai/gretel-synthetics
https://github.com/gretelai/gretel-synthetics

Tooling - benchmarking

Most known ones should be:

● pgbench - a staple really for anyone orbiting Postgres
● JMeter - Not exactly DB focused, but battle-tested and can do scripting,

parallelism, query param randomization / fetching from DB
● sysbench - Scriptable database and system performance benchmark DB scripts in

Lua)
● HammerDB - TPCC and TPCH load testing / benchmarking Oracle, MS SQL

Server, IBM Db2, PostgreSQL, MySQL, MariaDB, scripting in TCL
● Benchbase - (formerly OLTPBench), Multi-DBMS, Multi-model, best benchmark

support
● Time Series Benchmark Suite - two tests (system monitoring, IoT, main DBs from

the TSDB space
● pgbench-tools - run combinations of database sizes, concurrent client count,

Postgres configuration sets

https://www.postgresql.org/docs/current/pgbench.html
https://jmeter.apache.org/
https://github.com/akopytov/sysbench
https://github.com/TPC-Council/HammerDB
https://github.com/cmu-db/benchbase
https://github.com/timescale/tsbs
https://github.com/gregs1104/pgbench-tools

● PostgreSQL Anonymizer - an extension to mask or replace personally identifiable
information PII) or commercially sensitive data from a Postgres database

● greenmask - PostgreSQL subsetting, anonymization and synthetic generation
● pg_sample - subsetting with RI kept
● Jailer - a GUI focused subsetter
● pg_anonymize - an extension to control anonymization by Postgres security labels
● pg_dump | sed …

Tooling - subsetting / anonymization

https://postgresql-anonymizer.readthedocs.io/en/stable/
https://github.com/GreenmaskIO/greenmask
https://github.com/mla/pg_sample
https://github.com/Wisser/Jailer
https://github.com/rjuju/pg_anonymize

Iʼve personally tried quite a few of those tools…but mostly concluded:

● Not that they create as many problems as they solve, but every tool brings some
limitations as usual

○ Which tend to surface only when past some first simpler milestones
○ Consider if you really need all those features

● Sadly common pretty to hit bugs or performance / parallelism walls
● As bigger front-up DB testing projects are rare-ish, one tends to forget about the

tool details and the tools change

Thus for one-off kickstarts or schema suitability evaluation tasks, where also
requirements differ a lot project-by-project and re-use might be harder - you probably
want to start with something super-simple, like goodʼol:

○ SQL
○ PL/pgSQL
○ Anonymization dumps or snapshots
○ Safe “seedˮ datasets mashed and mixed

Tooling - summary

Speeding things up

Generating well randomized data is pretty CPU intensive …

If the goal is just to fill the disk, to see how the DB behaves with huge
volumes in general, what latencies weʼre gonna get when caching is
minimal, or if alerting kicks in, what errors we get - one could employ:

● Unlogged tables - skips WAL / transaction log, much less writing
overhead / locking
○ Data will not survive a server crash though!

● Lowering the “fillfactorˮ - fillfactor is a table-level attribute,
saying how densely we pack the rows into data pages
○ Lower FF → we pressure the disks more heavily

Speeding things up - fast disk filling

Again - generating good, real life looking, and especially longer column
data is expensive.

If possible - re-use some existing small dataset, be it generated or from
production, mix it up a bit and re-inject - voila!

INSERT INTO x(data)
 SELECT data || random()::text FROM x LIMIT 1e2;

Iʼve blogged about some other similar tricks also in the past)
https://kmoppel.github.io/20221223-generating-lots-of-test-data-with-
postgres-fast-and-faster/

Speeding things up - use of “seedˮ data

https://kmoppel.github.io/2022-12-23-generating-lots-of-test-data-with-postgres-fast-and-faster/
https://kmoppel.github.io/2022-12-23-generating-lots-of-test-data-with-postgres-fast-and-faster/

If the app is a relatively standard one CRM, Webshop / Sales facts,
Inventory) there are quite some existing datasets out there.

One can load those up and selectively insert some similar columns
into your own schema (with some randomization)

https://wiki.postgresql.org/wiki/Sample_Databases
https://www.kaggle.com/datasets
https://huggingface.co/datasets
https://datasetsearch.research.google.com/
https://registry.opendata.aws/
https://datahub.io/collections
https://github.com/kmoppel/pg-open-datasets

Speeding things up - using similar “openˮ data

https://wiki.postgresql.org/wiki/Sample_Databases
https://www.kaggle.com/datasets
https://huggingface.co/datasets
https://datasetsearch.research.google.com/
https://registry.opendata.aws/
https://datahub.io/collections
https://github.com/kmoppel/pg-open-datasets

Makes a huuuge difference!

What I commonly do:

pg_dump --section=pre-data $prod | psql $dev

pgbench -n -f gen_testdata.sql -t 1000000 -c 16

psql -c “delete duplicates if any …ˮ # 1 version on how to do here

pg_dump --section=post-data $prod | psql $dev

Speeding things up - applying indexes in the last step

https://wiki.postgresql.org/wiki/Deleting_duplicates

A counter-intuitive trick can come handy time-to-time also …

With linear growth plus a simple schema (or just a verified correlation
to more data / activity) itʼs actually a good idea to not try to
meticulously replicate production environments, but going for weak
hardware on purpose!
● And do some math instead … ⚠
● Can save quite some time / $$

Very relevant also for the modern “serverlessˮ approach - which
could hide obvious problems via transparent scaling!
● Limit CU-s!

The “slowing things downˮ strategy

Gotchas

Some things to be aware of in regards to testing with synthetic data:

● Postgres can slow down quite considerably after a longer period of normal
activity due to “bloatˮ - to account for that the datasets should always be
larger than expected in real life or some “fillfactorˮ should be set 80%.

○ Also the test runtime should be as long as tolerable
● Ideally perf testing should not happen on a single hardware node, but on a

few different ones to see the effects
● Very low-end cloud instances are usually throttled also on IOPS and network

bandwith (bursting kicking in and out can make things even more fun)
● Avoid huge transactions with 100M+ rows, loop in chunks for better visibility /

resumability
○ For DB side looping prefer CREATE PROCEDURE / CALL syntax + batch COMMITs

Donʼt expect synthetic testing to cover all production problems …

Gotchas

THANK YOU!

QUESTIONS?

 SLIDES

