Postgres test data
generation 101

Kaarel Moppel, Freelance PostgreSQL Consultant
pgDay Nordic 2025, Copenhagen

$ whoami

e Full-time "wrestling"” with databases since 2007
e 20K+ hours in the Postgres ecosystem
o Many hats along the way
o Have developed somekind of a gut feeling on
"Postgres”-y things if anything
e Up for Postgres related consulting
o https://kmoppel.github.io/ (Blog & Contact)

https://kmoppel.github.io/

Agenda

The “why"

Common techniques
Advanced techniques
Tooling

Al-assisted tooling
Speeding things up
Gotchas

The “why"”

Why bother with DB testing / validation ?

Nobody is asking that question for app code, right ?

As a consultant I'm seeing over and over again that the initial DB layout
(or even the single-node approach in general) was completely not
suitable for upcoming known data growth / request counts ...

Such that in a few years $someone will have to deal with:

Jumpy or allout bad query performance

Manual DB maintenance routines

Unplanned work / incidents / downtime

Massive HW upscaling to cover some peaks and sleep peacefully

Could have been avoided with some pretty basic* DB-side validation!

Benefits of test data generation / performance testing

e Setting up a benchmark forces one to think a bit more about
the DB design
e Takes away some FUD around DB internals
o Might be “forced” to learn about a Postgres setting or two
o Makes future experimenting more cheap / accessible!
e Should bring out some obvious performance and concurrency
bottlenecks
o Assures that the design can handle the projected workload
e Validates approx query performance / TPS per $$
e Validates hardware / cloud provider degradation and settings
o Not all clouds are created equal

Benefits of test data generation / performance testing

e If have a lot of data (+ incoming streams) can gauge how doable /
time-consuming / expensive database migrations might be in the
future

o The "oh, we'll then just migrate” myth

e How much space / $$ would backups and snapshots allocate for
huge DBs after compression / deduplication steps?

e How much WAL will we be generating, can LR even keep up?

e How much time would it take to run a “pg_dump” or PITR restore
clone from a future life-sized DB?

o Justincase - “pg_dump”is not a good backup strategy

The "elephant in the room”

Gaps in DB side knowledge and lack of awareness on importance

e Often considered “someone else's” territory - meaning just
overlooked or testing limited to unit / functional / integration tests
across the DB boundary

e The app frameworks / deployment systems often get in the way

o Testdata tasks are pretty long-running

e Hard to fix the knowledge gap in a short time obviously (even with
Al)...but there are a few basic techniques that should give the 80%
result with “little effort"™

http://pgtap

Finding a window in the SDLC process

Finding where to plug in “"database stuff” is a real problem actually - even in
today's world of abstractions - a database is often not “meat”, not “fish”. And
worse - even scale-ups, not to mention startups, don't want* or can't find a DBA ...

I'd advocate for a two-pronged approach:

e Just task someone "DB-able" with ad-hoc one-time validation

O Ignoring team’'s common CI/CD flow of doing things if needed. Standalone SQL or
Python scripts and some result numbers are infinitely better than nothing!

o DB engines are pretty stable and try to use robustly scaling algorithms - the initial
pre-rollout verification is the most critical!

e Setting up some automation to be able to run through a more extensive / slow
DB pipeline also “per need”, when some danger / long term possible
side-effects identified

o A mini-version of the former so to say, with some visible feedback so that
“non-wizards" could be alarmed

"
Q
S

lm
=

<
O
O

whd
O
>
©
<
whd
"
S
=

Techniques - generate_series|()

The generate_series() function is a must have tool in a Postgres
dev’s toolbox!

e A generator function to “draw"” sequences / rows from
e Similar to Python's “range”

e Supports numerals and dates / timestamps

e Step / stride

select generate_series(1, 10, 5);

generate_series

1
6
(2 rows)

Techniques - generate_series|()

select d::date, i from
generate_series(current_date-6, current_date, "1d'::interval) with ordinality x(d, i);

generate series

2025-03-11
2025-03-12
2025-03-13
2025-03-14
2025-03-15
2025-03-16
2025-03-17
(7 rows)

Techniques - generate_series|()

Q: How big would our event table will look like after 3years, assuming we have
S50 INSERT's per second?

CREATE UNLOGGED TABLE measurement (
id int8 GENERATED ALWAYS AS IDENTITY,
created_on timestamptz,
valuel float,
value?2 float

);

INSERT INTO measurement (created_on, valuel, value2)
SELECTgs, 0, O
FROM
generate_series(CURRENT_DATE - '3 years'::interval, now(), '20ms') gs;

Techniques - randomizing

SELECT random(); -- float / double precision between 0.0 <= x < 1.0
SELECT string_agg(
substr('ABCDEFGHJKLMNPQRSTUVWXYZ23456789',
(random() * 31 + 1):int, 1), "
) FROM generate_series(1, 8);

SELECT random_normal(100, 10) FROM generate_series(1, 10); -- v16+

-- From the "tablefunc” extension
SELECT * FROM normal_rand(1000, 5, 3); -- 1k values with a mean of 5 and stddev 3

SELECT setseed(0.666); -- to have repeatable “random” data

PS For more serious / expensive randomization try the “pgcrypto” extension or extract
some parts from gen_random_uuid()

Techniques - CASE WHEN random() chaining

A classic to randomize between a few choices or increase randomness / add some jitter
by chaining together a few random()-s

SELECT
CASE WHEN random() < 0.5 THEN
true
ELSE
false
END AS x;

SELECT

CASE WHEN random() < 0.02 THEN
random() * 100

WHEN random() < 0.1 THEN
random() * 10

ELSE
random()

END AS x;

Techniques - PL/pgSQL

Ideally one should remain in pure SQL or SQL functions “territory” (faster*), but if logic
gets too unreadable PL/pgSQL is a good choice still for “in-DB" generation

SELECT (array_shuffle(string_to_array('abcd', NULL)))[1];
VS
SELECT random_choice(array['a’, 'b', 'c', 'd']);

CREATE OR REPLACE FUNCTION random_choice (items anyarray)
RETURNS anyelement
LANGUAGE plpgsql AS $$
DECLARE
len int; idx int;
BEGIN
len := array_length(items, 1);
idx := 1+ floor(random() * len)::int;
RETURN items[idx];
END; $$;

Techniques - TABLESAMPLE

To choose larger chunks of shuffled / randomized data PostgreSQL
supports the SQL:2003 standard TABLESAMPLE clause:

-- Take 30% of data
SELECT * FROM pgbech_accounts TABLESAMPLE SYSTEM (30) ;

SYSTEM - takes some random blocks, takes all records from those block
BERNOULLI - scans the whole table and randomizes individual rows
SYSTEM_ROWS - exact rows. Need to create the "tsm_system_rows"
extension

https://www.postgresql.org/docs/current/sql-select.html

Techniques - LATERAL Joins

Lateral enables JOIN-level “generators”- i.e. for each input “parent” / “left side” row, we
want to dynamically choose “child” or “fact” rows based on some criteria. A MUST
HAVE technique in a data / database engineers toolbox!

SELECT a.* FROM pgbench_branches b
JOIN LATERAL (SELECT bieh;aid, abalance FROM pgbench_accounts
WHERE bid = b:bid ORDER BY abalance DESC LIMIT 2) a ON TRUE;

abalance

76562
3634
198007
126249
288385
PACPACRY:

Techniques - LATERAL Joins

PS Also variable rowcounts per group is possible! Especially in ML model
training can be crucial that all groups are represented, albeit a little.

-- Assuming have some “driving"” table column available
-- ALTER TABLE pgbench_branches ADD rowlimit int DEFAULT (6*random())::int ;

SELECT a.* FROM pgbench_branches b
JOIN LATERAL (
SELECT * FROM pgbench_accounts
WHERE bid = b.bid LIMIT b.rowlimit /* Or directly: (random()*6)::int */
) a ON TRUE;

(7))
Q
-
=
c |
L
c L«
Q
Pr
©
Q
(&)
c
(4]
>
O
<

Advanced techniques - pgbench

Pgbench is a lightweight and easy to use benchmarking tool / framework tfrom the
Postgres project (might not be bundled with “client” packages though)
e Revolves around a simplistic OLTP-style banking schema (by default, TCP-B like)
e Can be scripted and parallelized

pgbench --initialize --scale=1 # 1 scale unit = 100k bank accounts ~ 13MB of main table data
pgbench -n --select-only --client=2 --time=10 # Do key reads for 10s from 2 sessions

krl@bench=# \dt+

List of relations

Persistence | Access method Description
public pgbench_accounts permanent FYI - tO “grOk” the magiC
i | e ity e scale units I'm usually
(gu?i;;) pgbench_tellers permanent USing a I|tt|e helper Up on
krl@bench=# \d pgbench_accounts M . More hej on
Column ten HPUbuc.gcg)'ﬁgi:-o_ra\cco:zﬁ;ble Default hOW the formUIa was
derived.

aid integer not null
bid integer
abalance | integer
filler character(84)
Indexes:
"pgbench_accounts_pkey" PRIMARY KEY, btree (aid)

https://www.postgresql.org/docs/16/pgbench.html
https://jsfiddle.net/kmoppel/6zrfwbas/
https://www.cybertec-postgresql.com/en/a-formula-to-calculate-pgbench-scaling-factor-for-target-db-size/

Advanced techniques - custom pgbench scripts

The default schema / test scripts are rarely useful outside of stress testing or getting an
approximate latency feel for indexed key operations.

Can use custom SQL files or “pgbench” scripts to play with custom schemas, variables,
different types of randomness, fetch some setup data from DB / shell, if / else.

$ pgbench --show-script simple-update

-- simple-update: <builtin: simple update>

\set aid random(1, 100000 * :scale)

\set bid random(1, 1 * :scale)

\set tid random(1, 10 * :scale)

\set delta random(-5000, 5000)

BEGIN;

UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta,
CURRENT_TIMESTAMP);

END;

https://www.postgresql.org/docs/16/pgbench.html#id-1.9.4.11.9.3
https://www.postgresql.org/docs/current/pgbench.html#PGBENCH-BUILTIN-FUNCTIONS

Advanced techniques - custom pgbench scripts

SELECT project id, table 1id, as pgbench helper
FROM public.table metadata ORDER BY random() LIMIT

SELECT tz - (random() *)::int * 'Ims'::interval as tz,

pgbench helper FROM (select unnest (histogram bounds::text::timestamptz[])
tz from pg stats where attname = 'last changed time' and schemaname =
'public' and tablename = 'datatable') x ORDER BY random() LIMIT

—

\set shard id random (O,

select row key, data, last changed time

from datatable

where shard id = :shard id

and project id = :project id and table id = :table id
and last changed time > ':tz'::timestamptz

order by row key limit

Advanced techniques - custom pgbench scripts

A short version of a some actual test | ran to choose a partitioning strategy

Set up the schema / import data distributions from production

Reset internal Postgres stats counters
psql -¢ “SELECT pg_stat_statements_reset()" -c "SELECT pg_stat_reset()"

The scales are from analyzing prod pg_stat_statements calls data
pgbench -n -f ins_upd.sql@1 -f sel_1.sql@30 \

-f sel_2.sql@20 -f sel_3.sqI@10 -f sel_4.sql@5 \

-f sel_5.sql@5 -f del_gc.sql@1\

--client=32 --jobs 2 -T 86400 -P 1800 &> run.log

Analyze the metrics ...

Advanced techniques - using real table stats

Allows to easily generate “near to real life" distributions. In case the real values are not a
secret, would needs some custom handling / hashing otherwise

SELECT
schemaname,
tablename,
attname,
null frac,
avg width,
n distinct,
most common fregs,

correlation,
most common vals::text::text[], -- assuming no secrecy 1ssues
histogram bounds::text::text|[] —— has real values 1in it

FROM pg stats
WHERE tablename IN ('pgbench accounts','...');

Advanced techniques - increasing stats precision

If want to “test clone” (*) a larger existing DB distribution, one should know that
the Postgres stats are by default very lossy - ANALYZE scans max 30k pages
(~234 MB). If your data changes rapidly or is skewy then defaults are not enough!

A workaround is to increase the “stats target” temporarily, update stats, export, roll
back.

begin;

set default statistics target to 400 ; -- ~IGB

analyze pgbench accounts ; -- PS will block Autovacuum!
\copy ... —-— export pg stats

rollback; -- NB! Commit could flip some plans

One stats exporting-importing example here:

https://gist.github.com/kmoppel/dbc805c6a0519d4a9e0a5d9b92c03425

Advanced techniques - jumping over FK hurdles

When populating some “real” app schema, it can be tedious to insert test data - as
all Foreign Keys need to be satisfied ...

Or with performance testing we might only care about a few critical / fast-growing
tables, not the correctness of the whole “spiderweb”.

Workarounds:

e A schema dump with minimal table definitions only:
pg_dump --section=pre-data mydb

e A custom schema dump with a few tables only:
pg_dump -t customers -T '*bigtable*' mydb

e A Postgres session level hack to disable background FK triggers:
SET session_replication_role TO replica ; A

Tooling - no shortage

The "problem space” is not new actually - quite some tools out there! They assist
mostly with test data generation, but also with anonymization and load testing / actual
benchmarking.

Benefits of generating synthetic test data:

Privacy / security - no real data can leak
Faster development - don't have to wait for any green lights / gate-keeping
Flexibility - can often speed up things if to disconnect from real world constraints
o Some duplicate / cheap “filler” data OK in most cases
o Rarely actually need all columns for example to be authentic to develop “a
feature or two", just similar size / volume and index cardinality
e With “Al" can get pretty close to “authentic” nowadays
o Could run into time / latency / cost issues though ...

Tooling - generation

The “faker” Python library / CLI - “mother” on many other tools / wrappers
e Built-in providers and Community providers / extra domains

pip install Faker

Use faker.Faker() to create and initialize a faker generator, which can generate data by
accessing properties named after the type of data you want.

from faker import Faker
fake = Faker()

fake.name()
'Lucy Cechtelar’

fake.address ()
'426 Jordy Lodge
Cartwrightshire, SC 88120-6700'

fake.text()
'Sint velit eveniet. Rerum atque repellat voluptatem quia rerum. Numquam excepti
beatae sint laudantium consequatur. Magni occaecati itaque sint et sit tempore

https://faker.readthedocs.io/en/master/#basic-usage
https://faker.readthedocs.io/en/stable/providers.html
https://faker.readthedocs.io/en/stable/communityproviders.html

Tooling - generation

mimesis - or a sort of faker++ in Python - faster and with a bit more humanly touch

Generating 100k full namesq|
I Library 1 Method name Iterations ‘ Uniqueness ” Runtime (in seconds)
| Mimesis " full_name() | 100 000 ‘ 98 265 (98.27%) | 1.344 |
V Faker ” Faker.name() | 100 000 | 71 067 (71.07%) 17.375

Generating 1 million full names

Library Method name | Iterations | Uniqueness Runtime (in seconds)
Mimesis | full_name() 1000 000 | 847 645 (84.76%) | 13.685
Faker Faker.name() 1000 000 | 330 166 (33.02%) | 185.945

https://github.com/lk-geimfari/mimesis

Tooling - generation

PostgreSQL Anonymizer - Dalibo’s postgresql_faker functionalities have moved
e Some built-in seed datasets + custom functions

SELECT anon.dummy_last_name();
dummy_last_name

Tillman

SELECT anon.dummy_last_name_locale('fr_FR');
dummy_last_name_locale

Granier

SELECT anon.dummy_last_name_locale('pt_BR');
dummy_last_name_locale

Barreto

Currently 7 locales are available: ar SA, en_US(default), fr_ FR, ja_JP, pt BR, zh CN, zh_ TW.

https://gitlab.com/dalibo/postgresql_anonymizer

Tooling - generation

Synth - was a pretty promising declarative generator
e With option to infer data type / nature from live DB-s

You can use the synth import command to automatically generate Synth schema
files from your Postgres, MySQL or MongoDB database:

$ synth import tpch --from postgres://user:pass@localhost:5432/tpch d?
Building customer collection...

Building primary keys...
Building foreign keys...
Ingesting data for table customer... 10 rows done.

Finally, generate data into another instance of Postgres:

$ synth generate tpch --to postgres://user:pass@localhost:5433/tpch

https://github.com/shuttle-hq/synth

Tooling - generation

Benerator - "old style"” XML description to files / RDBMs
DATAMIMIC - a more modern “Al"-aided version of Benerator

5. create your own benerator script myscript.xml with the following content

<setup>

<import domains="person,organization"/>

<generate type="customer" count="1000" threads="1" consumer="LoggingConsumer,CSVEntityk
<variable name="person" generator="new PersonGenerator{minAgeYears='21', maxAgeYears:
<variable name="company" generator="CompanyNameGenerator" />
<attribute name="first_name" script="person.familyName" />
<attribute name="last_name" script="person.givenName" />
<attribute name="birthDate" script="person.birthDate" converter="new java.text.Simple
<attribute name="superuser" values="true, false" />
<attribute name="salutation" script="person.salutation " />
<attribute name="academicTitle" script="person.academicTitle" />
<attribute name="email" script="'info@' + company.shortName.replace(' ', '-') + this.

</generate>

</setup>

{4 E——

6. run your first benerator script

benerator myscript.xml

https://github.com/rapiddweller/rapiddweller-benerator-ce
https://github.com/rapiddweller/datamimic

Tooling - generation

Not really that hard to throw together “something” for a limited business domain project.
For example I've also got a small set of pure-SQL functions for myself for main data
types / object classes to generate random, or choiced / ranged, pseudo-random data.

The benefit of pure-SQL is that it runs on all flavors of Postgres and doesn’t need any
complex installation or privileges and can fire up “pgbench” quickly.

insert into table_x

select
tdgen.random_bigint() as id,
tdgen.random_choice('{1,2,3,4}"::int8[]) as project_id,
tdgen.random_text(10, 20) as description,
tdgen.random_choice('{1,1,1,0,0,2}"::int8[]) as depth,
tdgen.random_jsonb(0,2) as metadata,
tdgen.random_epoch_micros('2021-11-01') / 1000 as last_updated_time,
tdgen.random_bigint() % 1e6 as dataset_id

from
generate_series(1, 1€6);

Tooling - generation, Al-assisted (cloud)

Here's a SQL script to generate 1,000,000 test rows in pgbench_accounts with varied abalance and A promising
filler values:

start at least!

Used ChatGPT

- S prompt link
public.pgbench_branches (bid, bbalance, filler)

i, (random() *) RS , md5(1i::text):: (88)
generate_series(1, Ak

public.pgbench_accounts (aid, bid, abalance, filler)

i,

(random() * 41 +

!

(random() * - } I

r
mdS5(i::text || random()::text)::
generate_series(, i

https://chatgpt.com/share/67d8a35c-7ab0-8009-a102-371d620c1faa

Tooling - generation, Al-assisted (local)

chat

Couldn’t get much simpler
really with Ollama:
1. Install Ollama
2. Start Ollama (ollama
serve)
3. pip install ollama
4

Run the Python code (for
better DB injection in dict
or JSON format + use
streaming mode)

> SQL insert statement using PostgreSQL:

(id, first_name, last _name, date of birth, email)

1990-05-12°, "johndoe@example.com),
1985-03-20', 'janesmith@example.com')
L J - N e s e]

'1970-01-15", 'michaelbrown@example.com');

Tooling - generation, Al-assisted (local)

n sdv.datasets.demo import download_demo 5 https://qithub.com/
sdv-dev/SDV

real_data, metadata = download demo(

modality="'single_table',
dataset_name='fake_hotel_guests')

michaelsanders P —
27 Dec 2020 = 29 Dec 202 49380 Rivers Street 4075084747483975747
@shaw.net False BASIC 37.89 292D 9Dec2020 | 131.23 Spencerville, AK 68265

4 Boyle Meadow
@Er%%’:giz False BASIC 24.37 30 Dec 2020 02 Jan2021 | 114.43 Conaybore TN 29063 180072822063468

i 0323 Lisa Station Apt. 208
W%%%“;?ggsrja True DELUXE 0.00 17Sep2020 18Sep2020 = 368.33 = Port Thomas, LA 82585 ShRpodToRr 00

https://github.com/sdv-dev/SDV
https://github.com/sdv-dev/SDV

Tooling - generation, Al-assisted (more knobs)

import pandas as pd
from mostlyai.sdk import MostlyAI

load original data
repo_url = 'https://github.com/mostly-ai/public-demo-data’
df_original = pd.read_csv(f'{repo_url}/raw/dev/census/census.csv.gz')

instantiate SDK

mostly = MostlyAI()

train a generator

g = mostly.train(config={

'name’': 'US Census Income', # name of the generator
"tables’: [{ # provide list of table(s)
'name': 'census', # name of the table
‘data’: df_original, the original data as pd.DataFrame

H

'tabular_model_configuration': {
'max_training_time': 2,
model, max_epochs,, ..

tabular model configuration (optional)
cap runtime for demo; set None for max accuracy
further model configurations (optional)

+

H

'differential_privacy': { # differential privacy configuration (optional)
'max_epsilon': 5.0, # - max epsilon value, used as stopping criterion
'delta’: 1e-5, # - delta value
}
columns, keys, compute, .. # further table configurations (optional)
}]
}
start=True, # start training immediately (default: True)

wait=True, # wait for completion (default: True)

https://github.com/mostly-ai
[mostlyai

Python toolkit for
high-fidelity, privacy-safe
Synthetic Data. Local and
client modes, trained model
exporting / re-use

https://github.com/mostly-ai/mostlyai
https://github.com/mostly-ai/mostlyai

Tooling - generation, Al-assisted (more knobs)

Gretel Navigator Tabular Fine-Tuning

Create high-quality,
domain-specific datasets
for generative Al

Gretel's flagship model for generating tabular datasets supporting
numerical, categorical, free text, and event-driven data.

Create a dataset Contact Sales >

https://github.com/gretelai
/aretel-synthetics

Quite advanced already,
need some Al/ML
background

https://github.com/gretelai/gretel-synthetics
https://github.com/gretelai/gretel-synthetics

Tooling - benchmarking

Most known ones should be:

pgbench - a staple really for anyone orbiting Postgres

JMeter - Not exactly DB focused, but battle-tested and can do scripting,
parallelism, query param randomization / fetching from DB

sysbench - Scriptable database and system performance benchmark (DB scripts in
Lua)

HammerDB - TPC-C and TPC-H load testing / benchmarking (Oracle, MS SQL
Server, IBM Db2, PostgreSQL, MySQL, MariaDB, scripting in TCL)

Benchbase - (formerly OLTPBench), Multi-DBMS, Multi-model, best benchmark
support

Time Series Benchmark Suite - two tests (system monitoring, 10T), main DBs from
the TSDB space

pagbench-tools - run combinations of database sizes, concurrent client count,
Postgres configuration sets

https://www.postgresql.org/docs/current/pgbench.html
https://jmeter.apache.org/
https://github.com/akopytov/sysbench
https://github.com/TPC-Council/HammerDB
https://github.com/cmu-db/benchbase
https://github.com/timescale/tsbs
https://github.com/gregs1104/pgbench-tools

Tooling - subsetting / anonymization

e PostgreSQL Anonymizer - an extension to mask or replace personally identifiable
information (PIlI) or commercially sensitive data from a Postgres database
greenmask - PostgreSQL subsetting, anonymization and synthetic generation
pag_sample - subsetting with Rl kept

Jailer - a GUI focused subsetter

pg_anonymize - an extension to control anonymization by Postgres security labels
pg_dump | sed ...

https://postgresql-anonymizer.readthedocs.io/en/stable/
https://github.com/GreenmaskIO/greenmask
https://github.com/mla/pg_sample
https://github.com/Wisser/Jailer
https://github.com/rjuju/pg_anonymize

Tooling - summary

I've personally tried quite a few of those tools...but mostly concluded:

e Not that they create as many problems as they solve, but every tool brings some
limitations as usual
o Which tend to surface only when past some first simpler milestones
o Consider if you really need all those features
e Sadly common pretty to hit bugs or performance / parallelism walls
e As bigger front-up DB testing projects are rare-ish, one tends to forget about the
tool details and the tools change

Thus for one-off kickstarts or schema suitability evaluation tasks, where also
requirements differ a lot project-by-project and re-use might be harder - you probably
want to start with something super-simple, like good'ol:

o SQL

o PL/pgSQL

o Anonymization dumps or snapshots

o Safe "seed" datasets mashed and mixed

Speeding things up

Speeding things up - fast disk filling

Generating well randomized data is pretty CPU intensive ...

If the goal is just to fill the disk, to see how the DB behaves with huge
volumes in general, what latencies we're gonna get when caching is
minimal, or if alerting kicks in, what errors we get - one could employ:

e Unlogged tables - skips WAL / transaction log, much less writing

overhead / locking
o Data will not survive a server crash though!

e Lowering the “fillfactor” - fillfactor is a table-level attribute,
saying how densely we pack the rows into data pages
o Lower FF - we pressure the disks more heavily

Speeding things up - use of “seed" data

Again - generating good, real life looking, and especially longer column
data is expensive.

If possible - re-use some existing small dataset, be it generated or from
production, mix it up a bit and re-inject - voila!

INSERT INTO x(data)
SELECT data || random()::text FROM x LIMIT 1e2;

(I've blogged about some other similar tricks also in the past)
https://kmoppel.qgithub.io/2022-12-23-generating-lots-of-test-data-with-
postgres-fast-and-faster/

https://kmoppel.github.io/2022-12-23-generating-lots-of-test-data-with-postgres-fast-and-faster/
https://kmoppel.github.io/2022-12-23-generating-lots-of-test-data-with-postgres-fast-and-faster/

Speeding things up - using similar “open" data

If the app is a relatively standard one (CRM, Webshop / Sales facts,
Inventory) there are quite some existing datasets out there.

One can load those up and selectively insert some similar columns
into your own schema (with some randomization)

https://wiki.postgresal.org/wiki/Sample_Databases
https://www.kaggle.com/datasets
https://hugqgingface.co/datasets
https://datasetsearch.research.google.com/
https://reqistry.opendata.aws/
https://datahub.io/collections
https://github.com/kmoppel/pa-open-datasets

https://wiki.postgresql.org/wiki/Sample_Databases
https://www.kaggle.com/datasets
https://huggingface.co/datasets
https://datasetsearch.research.google.com/
https://registry.opendata.aws/
https://datahub.io/collections
https://github.com/kmoppel/pg-open-datasets

Speeding things up - applying indexes in the last step

Makes a huuuge difference!

What | commonly do:

pg_dump --section=pre-data $prod | psql $dev
pgbench -n -f gen_testdata.sqgl -t 1000000 -c 16
psqgl -c “delete duplicates if any ..."” # 1 version on how to do here

pg_dump --section=post-data $prod | psql $dev

https://wiki.postgresql.org/wiki/Deleting_duplicates

The "“slowing things down" strategy

A counter-intuitive trick can come handy time-to-time also ...

With linear growth plus a simple schema (or just a verified correlation
to more data / activity) it's actually a good idea to not try to
meticulously replicate production environments, but going for weak
hardware on purpose!

e And do some math instead ... A

e Can save quite some time / $$

Very relevant also for the modern “serverless” approach - which
could hide obvious problems via transparent scaling!
e Limit CU-s!

N
®©
L
Q
s’
O
O

Gotchas

Some things to be aware of in regards to testing with synthetic data:

e Postgres can slow down quite considerably after a longer period of normal
activity due to “bloat” - to account for that the datasets should always be
larger than expected in real life or some “fillfactor” should be set (~80%).

o Also the test runtime should be as long as tolerable

e Ideally perf testing should not happen on a single hardware node, but on a
few different ones to see the effects

e \Very low-end cloud instances are usually throttled also on IOPS and network
bandwith (bursting kicking in and out can make things even more fun)

e Avoid huge transactions with 100M+ rows, loop in chunks for better visibility /

resumability
o For DB side looping prefer CREATE PROCEDURE / CALL syntax + batch COMMITs

Don't expect synthetic testing to cover all production problems ...

SLIDES

THANK YOU!
QUESTIONS?

